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MODEL OF ELASTOPLASTIC DEFORMATION OF MATERIALS,

BASED ON THE GAUGE THEORY OF DEFECTS WITH ALLOWANCE

FOR ENERGY DISSIPATION

UDC 539.3S. P. Kiselev

Mathematical models of plasticity and creep for the case of small deformations are proposed on the
basis of the gauge theory of defects with allowance for energy dissipation. It is assumed that plasticity
is related to the motion of dislocations, which occurs without changes in volume. In the creep model,
the motion of dislocations can proceed with changes in volume, and the “extra” volume is entrained
(brought) by point defects. With the help of Godunov’s generalized thermodynamic approach, it is
shown that the proposed plasticity model is hyperbolic according to Friedrichs.
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Introduction. Currently, there is elevated interest in constructing mathematical models of plasticity with
allowance for the internal structure of the material. Three research directions can be identified in this field: geometric
approach [1], gauge theory of defects [2], and generalized thermodynamic approach [3, 4]. The geometric approach
was suggested by K. Kondo and B. A. Bilby and is based on a comparison of an elastic medium containing defects
and a non-euclidean space with curvature and twisting. In [1], this approach was generalized to unsteady processes,
and evolution equations for curvature, twisting, and nonmetricity tensors were obtained. The gauge theory of defects
developed by A. Cadic and D. Edelen [3] allows one to describe an elastic medium with defects. Note, this theory
is a Hamiltonian one, whereas plastic deformation leads to energy dissipation. Dissipative processes in the gauge
theory of defects were taken into account in [5–7]. Godunov et al. [3, 4, 8] put forward a generalized thermodynamic
approach to constructing inelastic models. The requirement of hyperbolicity of the system of equations and the
law of energy conservation allow one to obtain closing relations in the form of differential equations for the field of
defects.

Models of the elastoplastic behavior of materials, based on the gauge theory of defects with allowance for
energy dissipation, are considered in the present paper.

1. Equations of the Gauge Theory of Defects. The Lagrangian of an isotropic elastic body in the case
of small deformations ∂uj/∂xj � 1 is determined by the formula [9]

Le =
∫
dV

[1
2
ρu̇iu̇i −

λ

2
∂ui

∂xi

∂uj

∂xj
− µ

2

( ∂ui

∂xj

∂ui

∂xj
+
∂ui

∂xj

∂uj

∂xi

)]
, (1.1)

where ui are the components of the displacement vector, u̇i = ∂ui/∂t, λ and µ are the Lamé coefficients, and ρ is
the density. Summation in formula (1.1) and further formulas is performed over repeated indices.

Lagrangian (1.1) is invariant under translation by a constant vector h = hiei and under rotation by a
constant vector Ω = Ωiei (ei are the basis vectors of the Cartesian coordinate system). The components of the
displacement vector under these transformations are determined by the relations

u′i = ui + hi, u′i = ui + εijkΩjuk, (1.2)

where εijk is an absolutely antisymmetric Levi-Civita tensor. In the case of local (gauge) transformations of
translation hi = hi(xj , t) and rotation Ωi = Ωi(xj , t), invariance of Lagrangian (1.1) under transformations (1.2)
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is violated. To recover invariance, gauge fields are introduced, where the usual derivatives ∂jui are replaced by
covariant derivatives Djui. After substitution of ∂jui → Djui into the Lagrangian, its invariance is recovered.

The gauge fields related to translation and rotation determine the fields of dislocations and disclinations,
respectively [2]. Experiments show that disclinations almost never arise in metals. The reason is that the elastic
energy of disclinations is rather high [10] EΩ ∼ µH2Ω2 [EΩ is the elastic energy of a disclination per unit length,
H is the reference size of the body, and Ω is the rotation angle (Frank vector)]; therefore, generation of disclinations
in an ideal crystal is energetically inefficient. At the same time, the elastic energy per unit length of a dislocation
is rather low Eb ∼ µb2 ln (H/b) (b is the Burgers vector, which has the order of interatomic distances a), and
dislocations readily emerge and move in crystals. In addition to dislocations and disclinations, there are point
defects (vacancies, inclusions) and pores whose elastic energy is small Ea ∼ µa3 (a is the interatomic distance
for a vacancy or inclusion or the pore size). Thus, carriers of plastic (inelastic) deformation in metals are either
dislocations or point defects and pores, and there are no disclinations. Based on this fact, only local translation
transformations are considered below.

Following [2, 5–7], we construct a Lagrangian invariant under local translation transformations

u′i = ui + hi(xj , t) (1.3)

by replacing partial derivatives in (1.1) by covariant derivatives

∂ui

∂t
−→ D4ui =

∂ui

∂t
+ β4i,

∂ui

∂xj
−→ Djui =

∂ui

∂xj
+ βji. (1.4)

Here, we introduce gauge (compensating) fields β4i(xk, t) and βji(xk, t), which can be related to the Lagrangian

Ld =
1
2

∫
(BJjiJji − Cαijαij) dV (1.5)

(B and C are constants). The quantities

Jij = −
(∂βij

∂t
+
∂β4j

∂xi

)
, αij = εikl

∂βlj

∂xk
(1.6)

have the meaning of the flux and density of dislocations, respectively. Such an interpretation follows from the
relations ∫

S

αijni dS =
∫
S

εikl
∂βlj

∂xk
ni dS =

∮
βlj dxl = Bj ,

−
∫
∂S

Jij dxi =
∮
∂βij

∂t
dxi =

∂Bj

∂t
,

where Bj is the total Burgers vector of dislocations crossing the area S bounded by the contour ∂S. Formulas
for transformation of the gauge fields β4i(xk, t) and βji(xk, t) follow from the condition of invariance of the gauge
derivatives (1.4) under transformations Lamé)

β′4i = β4i −
∂hi

∂t
, β′ji = βji −

∂hi

∂xj
. (1.7)

Substituting (1.7) into formulas (1.6), we can prove by direct calculations that Jij and αij remain invariant under
transformations Lamé). It follows from here that the Lagrangian

L = Le(D4ui, Djui) + Ld(Jij , αij) (1.8)

is invariant under transformations Lamé) and describes an elastic medium with dislocations, Le(D4ui, Djui) is
obtained from Lagrangian (1.1) by means of substitution (1.4), and Ld(Jij , αij) is determined by formula (1.5).

The Euler–Lagrange equations [11]

∂

∂t

( ∂L
∂q̇i

)
+

∂

∂xj

( ∂L

∂qi,j

)
−

( ∂L
∂qi

)
= 0 (1.9)

for the variables qi = {ui, β4i, βij} are found from the condition of extremality δS = 0 of the action S =
∫
Ldt and

have the form
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B
∂

∂xj

(∂βji

∂t
+
∂β4i

∂xj

)
= ρ

(∂ui

∂t
+ β4i

)
,

B
∂

∂t

(∂βji

∂t
+
∂β4i

∂xj

)
= −Cεjkl

∂αli

∂xk
+ σij , (1.10)

ρ
∂

∂t

(∂ui

∂t
+ β4i

)
=
∂σij

∂xj
.

The following formulas are valid for the stress tensor σij entering into (1.10):

σij = −pδij + Sij , p = −Kεe
kk, Sij = 2µee

ij , K = λ+ 2µ/3,

ee
ij = εe

ij −
1
3
εe

kkδij , εe
ij =

1
2

( ∂ui

∂xj
+
∂uj

∂xi

)
− εp

ij , εp
ij =

1
2

(βij + βji).
(1.11)

Here p is the pressure, Sij is the stress-tensor deviator, and K is the volume elasticity modulus; the superscript e
indicates elastic deformations. The zero value of surface integrals in the equation δS = 0 allows us to determine
the boundary conditions

fi = σijnj , niεkilεnml
∂βmj

∂xn
= 0. (1.12)

System (1.10)–(1.12) coincides with the corresponding linearized system of equations obtained in [2] for the
case of finite deformations. It should be noted that not all equations in (1.10) are independent. If we differentiate
the first equation in (1.10) in time ∂/∂t, differentiate the second equation with respect to the coordinate ∂/∂xj , and
subtract one from the other, we obtain the third equation (more exactly, three equations, because the subscript i
takes the values from 1 to 3). This result is a consequence of the second Nöther theorem (see [12]) according to
which there are n identities among the Euler–Lagrange equations if the action S is invariant with respect to a group
of transformations depending on n arbitrary functions. In the case considered, n Euler–Lagrange equations can be

expressed via the remaining equations. In our case, the Lagrangian L and the action S =
∫
Ldt are invariant with

respect to the group of transformations Lamé) depending on three arbitrary functions hi(xj , t); therefore, there
are three identities in (1.10). Thus, the number of independent equations in (1.10) is smaller than the number of
independent variables, and they have to be supplemented by three equations, which are called gauge conditions.
The Lorentz gauge equations or the Coulomb gauge [13] are used most frequently. In the present work, we use the
Coulomb gauge β4i = 0. Then, it follows from the first equation in (1.7) that β′4i = β4i = 0, if ∂hi/∂t = 0, and the
gauge transformation has the form

u′i = ui + hi(xj),

where hi is independent of time. With allowance for the above-mentioned facts, Eqs. (1.10) transform to the
following equations:

B
∂2βji

∂t2
= −Cεjkl

∂αli

∂xk
+ σij , ρ

∂2ui

∂t2
=
∂σij

∂xj
, β4i = 0.

Lagrangian (1.8) remains invariant under translation transformations; therefore, according to the first Nöther
theorem (see [12, 14]), the following law of conservation of energy and momentum is valid:

∂T β
α

∂xβ
= 0, T β

α =
∂L

∂qi,β

∂qi
∂xα

− Lδβ
α, {α, β} = {1, 2, 3, 4}. (1.13)

Here, T 4
4 = E is the energy and T k

4 is the momentum of the medium:

E =
∂L

∂u̇i

(∂ui

∂t

)
+

∂L

∂β̇ji

(∂βji

∂t

)
− L =

ρ

2

(∂ui

∂t

)2

+
B

2

(∂βij

∂t

)2

+ E1

(
εe

ij

)
+ E2(αij),

T k
4 =

∂L

∂ui,k

(∂ui

∂t

)
+

∂L

∂βji,k

(∂βji

∂t

)
= −σik

ρ

2

(∂ui

∂t

)
− Sjki

(∂βij

∂t

)
.

(1.14)

We introduced the notation

Sjki = −Cεjklαli, E1(εe
ij) = (λ/2)(εe

kk)2 + µεe
ijε

e
ij , E2(αij) = (C/2)αijαij (1.15)
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[Sjki is the tensor of the pair of forces generated by dislocations, E1(εe
ij) is the elastic energy depending on elastic

strains in the material, and E2(αij) is the elastic energy of interaction of dislocations]. Substituting (1.14) into (1.13),
we obtain the following law of conservation of energy of an elastic medium with defects:

∂E

∂t
=

∂

∂xk
(σikvi + Sjkiβ̇ji),

E =
ρ

2
v2

i +
B

2
β̇2

ij + E1(εe
ij) + E2(αij), vi =

∂ui

∂t
, β̇ij =

∂βij

∂t
.

(1.16)

The total energy E is composed of the kinetic energy of motion of the medium and defects and also of the elastic
energy of the medium and interacting defects (dislocations). The energy E is changed owing to the work of elastic
stresses σij on displacements vi dt and the moment of the pair of forces Sjki on plastic distortions β̇ji dt. The
tensor Sjki can be expanded with respect to the indices i, j into symmetric and antisymmetric parts; therefore,
the contribution to the work is made by the symmetric part [dεp

ij = (β̇ji + β̇ji) dt/2] and antisymmetric part
[dωp

ij = (β̇ji − β̇ji)dt/2] of the distortion tensor.
2. Mathematical Model of Plasticity. The above-described model is a particular case of a more general

gauge model of defects, containing dislocations and disclinations [2]. These models ignore energy dissipation in a
plastic flow of a material. Owing to energy dissipation, there appears the Rayleigh dissipative force in the right
side of the Euler–Lagrange equation:

∂

∂t

( ∂L
∂q̇i

)
+

∂

∂xj

( ∂L

∂qi,j

)
−

( ∂L
∂qi

)
= −∂D

∂q̇i
(2.1)

[D = D(q̇i) is a dissipative function]. In plastic deformation of metals, the dissipative function is usually approxi-
mated by a first-order homogeneous function of the plastic strain rate [16]:

D = Ys

√
(2/3)ε̇p

ij ε̇
p
ij , ε̇p

ij = β̇(ij) = (β̇ji + β̇ji)/2.

Here ε̇p
ij = ∂εp

ij/∂t is the plastic strain rate and Ys is the yield point. In this model, the independent variable is βij ;
we choose the dissipative function in a more general form

D = Ys

√
(2/3)β̇ij β̇ij , (2.2)

where β̇ji = β̇(ij) + β̇[ij] and β̇[ij] = (β̇ij − β̇ji)/2. In the particular case β̇[ij] = 0, expression (2.2) transforms to the
dissipative function [16].

It is known from the experiment that plastic deformation occurs without changes in volume βkk = 0; there-
fore, the Lagrangian L in (2.1) should be replaced by L̃ = L+ λ0βkk (λ0 is the Lagrange multiplier). Substituting
the formula for L̃ into (2.1) and using the expressions for the Lagrangian L (1.5), (1.8) and D (2.2), we obtain the
following equations that describe elastoplastic deformation [7]:

ρ
∂2ui

∂t2
=
∂σij

∂xj
, B

∂2βji

∂t2
= S′ji + Sji −

√
2
3
Ys

β̇ji√
β̇jiβ̇ji

,

S′ji =
∂

∂xk

(
Sjki −

1
3
Slklδji

)
.

(2.3)

Here σij , Sij , and Sjki are determined in (1.11) and (1.15), and the boundary conditions are given by formulas (1.12).
In a particular case, where the density of dislocations is independent of spatial coordinates ∂αij/∂xk = 0 and the
plastic strain rate is constant ∂2βij/∂t

2 = 0, the second equation of system (2.3) yields β̇[ij] = 0 and the Prandtl–

Reuss relations [16] ε̇p
ij =

√
(3/2)ε̇p

ij ε̇
p
ij (Sij/Ys). Considering the second equation of system (2.3), we can find

a simple mechanical analogy. If a load of mass m on a spring with rigidity k moves on a plane with a friction
coefficient ν, its motion in the one-dimensional case is described by the equations

m
∂2x

∂t2
= −kx− νmgẋ

|ẋ|
,

ẋ = ẍ = 0, −kx+ fr = 0, k|x| < νmg.
(2.4)
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We can see that the second equation in (2.3) is similar to the first equation in (2.4); the sum of stresses S′ji + Sji

plays the role of the elastic force −kx, the quantity B plays the role of the mass m, and
√

2/3Ys plays the role of
the sliding friction force νmg. If the load at a certain time is at rest ẋ = 0 and the elastic force acting on the load
is smaller than the sliding friction force (k|x| < νmg), then the elastic force is balanced by the static friction force:
kx = fr, where |fr| < νmg. The load remains at rest ẋ = 0 until the latter inequality is violated. For the complete
analogy, system (2.3) should be supplemented by the equations

∂βij

∂t
= 0,

∂2βij

∂t2
= 0, S̃ij − Sr

ij = 0 for S̃ijS̃ij <
2
3
Y 2

s , (2.5)

where S̃ij = Sij + S′ij . The stress Sr
ij is similar to the static friction force fr.

Energy dissipation in a plastic flow reduces the energy E, which is the sum of elastic and kinetic energies
[see the second formula in (1.16)]. To obtain the law of energy conservation, we have to generalize this formula by
including the thermal energy ET :

E =
ρ

2
v2

i +
B

2
β̇2

ij + E1(εe
ij) + E2(αij) + ET . (2.6)

Heating of the medium generates the thermal pressure pT ; therefore, it is also necessary to change the second
formula of system (1.11) as follows [17]:

p = px + pT , px = −Kεe
kk, pT = ΓET , ET = CV ρT. (2.7)

Here Γ is the Grüneisen coefficient, CV is the specific heat, and T is the temperature. Equations (2.6), (2.7) should
be supplemented by the second law of thermodynamics and the Gibbs relation:

T
dS

dt
= Ys

√
2
3
β̇ij β̇ij ,

dET

dt
= T

dS

dt
− pT

d

dt

(1
ρ

)
(2.8)

(S is the entropy density). Using (2.7), from the second formula in (2.8), we obtain the formula for entropy

S = S0 + CV ρ ln
( T
T0

(ρ0

ρ

)Γ)
,

which allows us to express the thermal energy in formulas (2.6) and (2.7) as a function of density and entropy
ET = ET (ρ, S). Since we consider small deformations in this work, the total derivatives in formulas (2.8) can be
replaced by partial derivatives d/dt = ∂/∂t+ vk ∂/∂xk ≈ ∂/∂t. Then, the complete system of equations is written
as

ρ
∂vi

∂t
=
∂σij

∂xj
, B

∂β̇ij

∂t
= Sij +

∂

∂xk

(
Sikj −

1
3
Slklδij

)
−

√
2
3

Ysβ̇ij√
β̇ij β̇ij

,

∂αlj

∂t
= εlki

∂β̇ij

∂xk
,

∂εe
ij

∂t
=

1
2

( ∂vi

∂xj
+
∂vj

∂xi

)
−
∂εp

ij

∂t
,

∂S

∂t
=
Ys

T

√
2
3
β̇ij β̇ij ,

(2.9)

where σij = −pδij + Sij , Sij = 2µee
ij , Sikj = −Cεiklαlj , and p is determined by formulas (2.7); the dot above a

letter indicates a partial derivative in time. Multiplying the first equation of system (2.9) by vi, the second equation
by β̇ij , the third equation by Cαlj , the fourth equation by σij , and the fifth equation by T , and summing these
equations, we obtain the law of energy conservation:

∂E

∂t
=
∂πk

∂xk
, E =

ρv2
i

2
+
Bβ̇2

ij

2
+ E1 + E2 + ET , πk = σikvi + Sikj β̇ij . (2.10)

Expression (2.10) is more general than (1.16), because it takes into account the change in the thermal energy of the
medium ET due to irreversible dissipation of energy in plastic deformation.

3. Mathematical Model of Creep. Creep is another example of the inelastic behavior where the metal
flows like a liquid under the action of an applied stress. The creep process usually occurs at high temperatures.
There are two classes of models for the creep description: phenomenological and microscopic. In phenomenological
models, the governing relations are postulated on the basis of experimental data; in microscopic models, these
relations are derived from the analysis of motion of defects in the field of external and internal stresses [10, 16].
Grinyaev and Chertova [18] used the gauge theory of defects for the creep description. It was assumed that creep
is related to the motion of dislocations. In addition to dislocations, however, a significant effect on creep is exerted
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by point defects [10]. A mathematical model of creep, which takes into account the contributions of dislocations
and point defects to creep, is proposed below on the basis of the gauge theory of defects.

First, we consider an isotropic elastic medium with dislocations, which is described by Lagrangian (1.5), (1.8).
In contrast to plasticity, the creep process can occur under infinitesimal stresses and with changes in volume
β̇kk = ε̇kk 6= 0; therefore, we choose the dissipative function in the form

D = ξ(ε̇p
kk)2 + ηβ̇′ij β̇

′
ij , (3.1)

where β̇′ij = β̇ij − (1/3)β̇kkδij . In the particular case ξ = η, expression (3.1) coincides with the dissipative function
used in [5, 18].

Substituting (1.5), (1.8), (3.1) into Eq. (2.1), we obtain the following equations for qi = {ui, βij}:

ρ
∂2ui

∂t2
=
∂σij

∂xj
, B

∂2βij

∂t2
= σ′ij + σij − 2ηβ̇′ij − 2ξ β̇kkδij ,

σij = −pδij + Sij , p = −Kεe
kk, Sij = 2µee

ij , σ′ij = C
( ∂2βij

∂xk∂xk
− ∂2βkj

∂xk∂xi

)
.

(3.2)

Assuming that βij = εp
ij + ωp

ij in the second equation of system (3.2) and separating the spherical and deviatoric
components, we rewrite this equation in the form

B
∂2ep

ij

∂t2
= S′(ij) + Sij − 2ηėp

ij , B
∂2εp

kk

∂t2
= −(p′ + p+ 2ξε̇p

kk),

B
∂2ωp

ij

∂t2
= S′[ij] − 2ηω̇p

ij , S′ij = σ′ij + p′δij , S′ij = S′(ij) + S′[ij], p′ = −1
3
σ′kk.

Inertial components in creep processes are small as compared to viscous components Bëp
ij � ηėp

ij , Bε̈
p
kk � ξε̇p

ij ,
and Bω̈p

ij � ηω̇p
ij ; the creep equations take the form

ėp
ij =

S′(ij) + Sij

2η
, ε̇p

kk = −p
′ + p

2ξ
, ω̇p

ij =
S′[ij]

2η
. (3.3)

The change in εp
kk in (3.3) is related to nonconservative motion of dislocations and should be accompanied by a flux

of point defects (vacancies) to the dislocation, which entrain the “extra” (εp
kk 6= 0) material from the dislocation or

bring it to the dislocation.
We obtain the equations for the motion of point defects. If introduction of a point defect changes the volume

of the body by Ωd and the concentration of defects is nd, the strain in the material is determined by the formula

ε̇kk = ε̇e
kk + ε̇d

kk, ε̇d
kk = Ωdṅd, (3.4)

where εe
kk is the elastic strain in the lattice. If the total strain equals zero (ε̇kk = 0), we obtain ε̇e

kk = −ε̇d
kk from

(3.4). For interstitial atoms, we have Ωd = Ωa > 0 and εe
kk < 0 (the lattice is compressed); for vacancies, we have

Ωd = −Ωv and εe
kk > 0 (the lattice is extended). Compressing stresses p = −Kεe

kk > 0 and extending stresses p < 0
act in the first and second case, respectively. Point defects are normally modeled by dilatancy centers [10]. In this
case, the defect at the point x0

i corresponds to the density of forces fi = −KΩdδ(xi − x0
i ). If such a defect is in the

field of elastic forces p = −Kεe
kk, it corresponds to the elastic energy of interaction E′ = −KΩdε

e
kk.

Since the concentration of defects nd is usually high, defects can be described as a solid solution in an atomic
lattice. Introducing the solution concentration c = nd/N � 1 (N is the number of atoms in the lattice per unit
volume), we write the chemical potential of the defect µ, as in the theory of weak solutions [10]:

µ = T ln c+ Ωdp+ ψ(T ). (3.5)

The conditions of equilibrium of point defects µ = const yields the formula for the equilibrium concentration

c = c0(T ) exp (−pΩd/T ).

If ∇µ 6= 0, there arises a flux of point defects j = −T−1ndD∇µ, for which, with allowance for (3.5), we obtain

j = −D∇nd − T−1ndΩdD∇p. (3.6)

297



Using the continuity equation, we write the equation for the concentration of defects
∂nd

∂t
+ div j = θ̇, (3.7)

where j is determined by Eq. (3.6). The source term θ̇ is related to deposition or evaporation of atoms on the
dislocation line θ̇ = ε̇p

kk/Ωd, where ε̇p
kk is determined by the second formula in (3.3). In the particular case j = 0,

Eqs. (3.4) and (3.7) yield ε̇d
kk = ε̇p

kk. As the boundary conditions for Eq. (3.7), we have to set nd|γ or ∇nd|γ at
the boundary γ. The emergence of defects to the surface is accompanied by the normal displacement of the surface
with the velocity

vn

∣∣∣
γ

= Ωdj
∣∣∣
γ
. (3.8)

4. Symmetrization of Equations of Elastoplastic Deformation (2.9). The law of energy conservation
(2.10) for system (2.9) allows us to use the generalized thermodynamic approach developed in [8, 19] to reduce this
system to a form with symmetric matrices. The internal energy E (2.6) in the law of energy conservation (2.10) is
a convex function of the eigenvariables E = E(ρvi, Bβ̇ij , ε

e
ij , Cαij , S). Using the Legendre transformation

F 0 = wi(ρvi) + bij(Bβ̇ij) + rijε
e
ij + aij(Cαij) + TS − E, (4.1)

we introduce the potential F 0 depending on the conjugate variables

F 0 = F 0(wi, bij , rij , aij , T ), (4.2)

found by the formulas

wi =
∂E

∂(ρvi)
, bij =

∂E

∂(Bβ̇ij)
, rij =

∂E

∂εe
ij

, aij =
∂E

∂(Cαij)
, T =

∂E

∂S
. (4.3)

It follow from (4.1)–(4.3) that

dF 0 = ρvi dwi +Bβ̇ij dbij + εe
ij drij + Cαij daij + S dT,

whence we find

ρvi = F 0
wi
, Bβ̇ij = F 0

bij
, εe

ij = F 0
rij
, Cαij = F 0

aij
, S = F 0

T , (4.4)

where the subscript of F 0 indicates the partial derivative, e.g., F 0
wi

= ∂F 0/∂wi, etc. In a similar manner, we
consider three Legendre transformations constructed on the basis of three functions (2.10) πk = σikvi +Sikj β̇ij and
determine three potentials

F k(wi, bij , rij , aij) = wiσik + rijHikj + bijSikj + aijGikj − πk,

wi =
∂πk

∂σik
, rij =

∂πk

∂Hikj
, bij =

∂πk

∂Sikj
, aij =

∂πk

∂Gikj

(4.5)

(no summation over k is performed). Using the explicit form of the functions πk (2.10) depending on the variables

πk = πk(σik,Hikj , Sikj , Gikj) [Hikj = (δikvj + δjkvi)/2, Gikj = Cεiklβ̇lj ], (4.6)

we can show that the new variables in (4.5) coincide with the variables introduced previously by formulas (4.3).
The quantities Sikj are determined in (1.15), and the variable Hikj was introduced in [8]. Using (4.5) and (4.6), we
obtain

dF k = σik dwi + Sikj dbij +Hikj drij +Gikj daij ,

which yields the formulas

σik = F k
wi
, Sikj = F k

bij
, Hikj = F k

rij
, Gikj = F k

aij
, (4.7)

with the notation

F k
wi

=
∂F k

∂wi
, F k

bij
=
∂F k

∂bij
, F k

rij
=
∂F k

∂rij
, F k

aij
=
∂F k

∂aij
.

Substituting formulas (4.4) and (4.7) into the equations of elastoplastic deformation (2.9), we rewrite them in the
new variables wi, bij , rij , aij , and T :
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∂F 0
wi

∂t
=
∂F k

wi

∂xk
,

∂F 0
bij

∂t
=
∂F k

bij

∂xk
− 1

3
∂F k

bll

∂xk
δij + rij −

1
3
rllδij −

√
2
3
Ys

bij√
bijbij

,

∂F 0
aij

∂t
=
∂F k

aij

∂xk
,

∂F 0
rij

∂t
=
∂F k

rij

∂xk
− 1

2
(bij + bji),

∂F 0
T

∂t
= Ys

√
2
3
bijbij .

(4.8)

Introducing the vector

qi = (b11, . . . , b33, a11, . . . , a33, r11, . . . , r33, w1, w2, w3, T ),

we can write Eqs. (4.8) as

∂F 0
qi

∂t
=
∂F k

qi

∂xk
+ . . . ,

where the dots stand instead of terms without derivatives, and the expression −(1/3)(∂F k
bll
/∂xk)δij , which will be

analyzed below. Following [8], we rewrite these equations as

F 0
qiqj

∂qj
∂t

= F k
qiqj

∂qj
∂xk

+ . . . . (4.9)

The matrix F k
qiqj

is symmetric, and matrix F 0
qiqj

is positively determined. The latter follows from the fact that the
Legendre transformation (4.1) does not violate the function convexity. Therefore, if E = E(yi) is a convex function
of the eigenvariables yi, then F 0 = F 0(qi) is also a convex function of qi. The symmetric form of system (4.8) is
violated by the term −(1/3)(∂F k

bll
/∂xk)δij in the second equation of this system. Nevertheless, the symmetric form

can be recovered if we add the following zero term to the right side of the third equation:

T k
ij = −1

3
F k

bllaij

∂bmn

∂xk
δmn.

To prove the identity T k
ij = 0, we express the new variables in terms of the old variables with the help of (2.6) and

(4.3):

wi = vi, bij = β̇ij , rij = σij , aij = αij . (4.10)

From (4.10) and the equalities βnn = β̇nn = bnn = bmnδmn = 0, we obtain the sought identity

∂bmn

∂xk
δmn = −1

3
F k

bllaij

∂bmn

∂xk
δmn = T k

ij = 0, (4.11)

where
1
3
F k

bllaij
=

1
3

∂

∂aij
Slkl =

C

3
εijk. (4.12)

Similarly, from (4.7), (4.10), and (4.12) we obtain

−1
3
∂F k

bll

∂xk
δij = −1

3
∂Slkl

∂xk
δij = −C

3
εnmk

∂amn

∂xk
δij . (4.13)

Taking into account equalities (4.11)–(4.13), we rewrite system (4.8) in a symmetric form:

∂F 0
wi

∂t
=
∂F k

wi

∂xk
,

∂F 0
bij

∂t
=
∂F k

bij

∂xk
− 1

3
F k

bllamn

∂amn

∂xk
δij + rij −

1
3
rllδij −

√
2
3
Ys

bij√
bijbij

,

∂F 0
aij

∂t
=
∂F k

aij

∂xk
− 1

3
F k

bllaij

∂bmn

∂xk
δmn,

∂F 0
rij

∂t
=
∂F k

rij

∂xk
− 1

2
(bij + bji), (4.14)

∂F 0
T

∂t
= Ys

√
2
3
bijbij .

Here, F k
bllaij

= (1/3)Cεijk. Since system (4.14) is symmetric and the function F 0(qi) is convex, it is hyperbolic
according to Friedrichs (see [8]).

This work was partly supported by the Ministry of Education of the Russian Federation (Grant No. E02-
4.0-224).
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